Habilitation à diriger les recherches

mention mathématiques et applications Identification and detection of stochastic systems application in structural monitoring

Laurent Mevel

Université de Rennes 1

22 Octobre 2008 / IRISA

ヘロト 人間 ト ヘヨト ヘヨト

æ

Outline

- Subspace identification
 - Consistency of subspace methods
- 2 Damage detection and localization
 - Damage detection
 - Damage localization
- 3 Damage detection and real problems
 - Temperature rejection
 - Flutter detection

And now ?

Damage detection in the frequency domain

A bit of history SISTHEM team past and present

- Past works from M. Basseville, A. Benveniste, M. Goursat
- 1980 1991 : Research (4PhD theses)
 - collaboration with IFREMER and EDF
 - BR and IV methods for subspace identification
 - IV damage detection
- 1996-1999 : European project Eureka SINOPSYS :
 - subspace damage detection foundations (Basseville et al.)
 - 1998 : I'm here
- 2000-2008 : new research problems in civil engineering and aircraft monitoring

・ 同 ト ・ ヨ ト ・ ヨ ト

Hidden Markov chains publications from PhD Thesis + postdoc

We will not talk about this.

- Basic properties of the projective product, with application to products of column-allowable nonnegative matrices, Mathematics of Control, Signals and Systems, 2000. with F. LeGland.
- Exponential forgetting and geometric ergodicity in hidden Markov models, Mathematics of Control, Signals and Systems, 2000. with F. LeGland.
- Asymptotical statistics of misspecified hidden Markov models, IEEE Transactions on Automatic Control, 2004. with L. Finesso.

ヘロト ヘアト ヘビト ヘビト

Applications Monitoring of integrity and stability

We worked on these structures.

ъ

$$\mathbf{M}\mathbf{x}''(t) + \mathbf{C}\mathbf{x}'(t) + \mathbf{K}\mathbf{x}(t) = f(t)$$

$$\begin{cases} X_{k+1} = A X_k + V_{k+1} \\ Y_k = C X_k \end{cases}$$

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = \boldsymbol{0}, \ (\boldsymbol{A} - \lambda \boldsymbol{I}) \ \boldsymbol{\Phi}_{\lambda} = \boldsymbol{0}$$

Mechanical engineers talk also about frequency and damping:

$$\begin{aligned} x(t) &= \exp^{\gamma t}, \text{with } \gamma = \omega(-\zeta \pm \sqrt{\zeta^2 - 1}) \\ \left\{ \begin{array}{l} \omega &= \sqrt{k/m} \text{ and } f = \omega/(2*\pi) \\ \zeta &= c/(2*\sqrt{k*m}) \end{array} \right. \end{aligned}$$

ヘロト ヘワト ヘビト ヘビト

э

Why structural health monitoring is important?

- Civil and aeronautical structures are ageing very fast
- Human inspection is most of the time impractical or non reasonable
- Non all structural behaviour can be predicted by design (e.g. damping)
- Some parameters are critical and need to be monitored (e.g. damping)

・ 回 ト ・ ヨ ト ・ ヨ ト

- Non stationary excitation (turbulence) : unknown, uncontrolled, non measured
- Civil engineering
 - Slow varying structure
 - Large number of sensors
 - Main concern is damage due to ageing
 - Main nuisance is temperature variation
- Aeronautical structures
 - Fast transient structure
 - Large number of modes
 - Main concern is stability and flutter
 - Main nuisance is aeroelasticity interaction

Identification vs detection

- Identification : what is the system state ?
 - a system is described by a reduced set of features
 - goal : estimate the features.
 - many methods
- Detection : has the system changed ??
 - much simpler goal provide a simple alarm
 - less precise information on the system state
 - information can be good enough for many applications
- 2 types of structures / 2 types of approaches

▲ 🗇 ▶ ▲ 三 ▶ ▲

Subspace methods

Outline

- Subspace identification
 - Consistency of subspace methods
- 2 Damage detection and localization
 - Damage detection
 - Damage localization
- Oamage detection and real problems
 - Temperature rejection
 - Flutter detection
- And now ?
 - Damage detection in the frequency domain

< 回 > < 三 >

Subspace methods

Subspace identification

$$\begin{cases} x_k = Ax_{k-1} + Bu_k + K(k)\nu_k \\ y_k = Cx_{k-1} + Du_k + L(k)\nu_k \end{cases}$$

where

$$\begin{bmatrix} K(k) \\ L(k) \end{bmatrix} \begin{bmatrix} K^{T}(k) & L^{T}(k) \end{bmatrix}$$

is the noise covariance matrix corresponding to the excitation varying in time.

The problem here is the identification of the pair (C, A).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Subspace methods

Subspace identification

$$R_i(N) \triangleq \frac{1}{s_N} \langle Y_i, Z_0 \rangle_N$$
 (covariance) or

$$R_i(N) \stackrel{\Delta}{=} rac{1}{s_N} \mathrm{E}_N(Y_i \mid Z_0)$$
 (data driven)

$$\mathcal{H}_{p}(N) \stackrel{\Delta}{=} \begin{bmatrix} R_{1}(N) \\ \vdots \\ R_{p}(N) \end{bmatrix} = \mathcal{O}_{p} \times G(N) \text{ and } \mathcal{O}_{p} \stackrel{\Delta}{=} \begin{bmatrix} C \\ \vdots \\ CA^{p-1} \end{bmatrix}$$

Akaike (1974), Verhaegen (1993), Deistler (1995), Moore (1996), Viberg (1997), Bauer (2000), Ljung (2002), Chiuso (2004), and Benveniste and Fuchs (1985)

Laurent Mevel

Soutenance d'habilitation

Subspace methods

Applications A few examples - monitoring of Ariane 5 booster launch - EADS/CNES

▲ 同 ▶ → モラ ▶

Figure: Parameters change during launch period - low uncertainty on frequency - damping is both critical and difficult to estimate

Subspace methods

Applications A few examples - soccer match in Bradford stadium

Figure: Sensors on stadium stand. Monitoring of crowd excitation. Jumps in parameter values : goals

Laurent Mevel Soutenance d'habilitation

Subspace methods

Some output-only subspace algorithms

 Covariance driven subspace identification

$$R_i(N) = \langle Y_i, Z_{0,M} \rangle_N,$$

$$\mathcal{H}_{p}(N) = \langle \mathcal{Y}_{0,p}^{+}, \mathcal{Y}_{0,M}^{-} \rangle_{N}$$

 Data driven subspace algorithms

$$\mathcal{H}_{p}(N) = \mathrm{E}_{N}(\mathcal{Y}_{0,p}^{+} \mid \mathcal{Y}_{0,M}^{-})$$

$$Z_{0,M} = \begin{bmatrix} Y_0 \\ \vdots \\ Y_{-M} \end{bmatrix}$$
$$\mathcal{Y}_{k,p}^+ = \begin{pmatrix} Y_k \\ \vdots \\ Y_{k+p} \end{pmatrix},$$
$$\mathcal{Y}_{k,p}^- = \begin{pmatrix} Y_k \\ \vdots \\ Y_{k-p} \end{pmatrix}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

э

Subspace methods

Some input/output subspace algorithms

Using projected past input and output as instruments

$$\mathcal{H}_{\rho} = \langle \mathcal{Y}^+_{0,\rho}, Z_{0,M} \rangle_N ,$$

$$Z_{i} \stackrel{\text{\tiny def}}{=} E_{N} \left(W_{i} \middle| \left(U_{0,M}^{+} \right)^{\perp} \right) \quad \text{, where} \quad W_{i} \stackrel{\text{\tiny def}}{=} \left[\begin{array}{c} U_{i} \\ Y_{i} \end{array} \right]$$

• Using projected inputs as instruments

$$\mathcal{H}_{\rho} = \mathrm{E}_{N}(\mathcal{Y}_{0,\rho}^{+} \mid Z_{0,M}),$$

where $Z_{0,M}$ is defined by $Z_{i} \triangleq \mathrm{E}_{N}\left(U_{i} \mid \left(\mathcal{U}_{0,M}^{+}\right)^{\perp}\right)$

Many more : CVA, MOESP, N4SID, ...

Subspace methods

Subspace identification and Instruments

"instrument z_k depends on observable quantities" :

 z_k is measurable wrt the σ algebra σ ($u_j : j \in \mathbb{Z}$) $\lor \sigma$ ($y_l : l \le k$) "instrument has sustainable energy" :

$$\lim_{N \to \infty} s_N = \infty, \text{ where } s_N \triangleq \sum_{k=-M}^{N-1} \|z_k\|^2$$

"instrument is not much correlated to the inputs" :

$$\left\langle \left[\begin{array}{c} B\\ D \end{array}
ight] U_j, Z_0 \right\rangle_N = o(s_N) ext{ for } j > 0$$

"instrument is well correlated to the state" :

$$\liminf_{N\to\infty}\sigma_n\left(\frac{1}{s_N}\langle X_0,Z_0\rangle_N\right)>0$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Subspace methods

Subspace identification a few comments

- Most subspace methods fit this "instrument" framework
- Non stationary excitation : coherency with applications

Theorem (consistent estimator)

 $(\mathit{C}(N), \mathit{A}(N))$ derived from $\mathcal{H}_p(N)$ is a consistent estimator of (C, A)

Nonstationary consistency of subspace methods, IEEE Transactions on Automatic Control, 2007. with A. Benveniste.

くロト (過) (目) (日)

Damage detection Damage localization

Outline

Subspace identification

Consistency of subspace methods

2 Damage detection and localization

- Damage detection
- Damage localization

3 Damage detection and real problems

- Temperature rejection
- Flutter detection

And now ?

• Damage detection in the frequency domain

・ 戸 ・ ・ 三 ・ ・

ъ

Damage detection Damage localization

A few applications nano MEMS particle detection

(本間) (本語) (本語)

Figure: Mass detection (1 particle nano) on cantilever beam by detection. Repeatability over 6 different nano beams is checked. Collaboration with Purdue University

Damage detection Damage localization

Damage detection Residual definition

$$E_{ heta}H(heta_*,Y)=0$$
 if $heta= heta_*$

and

$$E_{\theta}H(\theta_*, Y) \neq 0$$
 if $\theta \neq \theta_*$

Now define a time-normalized residual

$$\zeta_N(\theta) = \frac{1}{\sqrt{N}} \sum_{t=1}^N H(\theta, Y_t)$$

Detection of Abrupt Changes - Theory and Applications - Basseville and Nikiforov (1993).

Damage detection Damage localization

Damage detection

$$\theta - \theta_* = \frac{1}{\sqrt{N}} \, \delta$$
, with δ independent of N

What it means ??

- In Theory : we can obtain central limit theorems for the "damaged" scenario
- In Practice : the more samples we have, the smallest change we can detect
- With respect to others : it is a simple way to infer about the damaged state, without assuming too much about it

・ 回 ト ・ ヨ ト ・ ヨ ト

Damage detection Damage localization

Damage detection Statistical convergence

Theorem (central limit theorem for local approach)

$$\begin{cases} \zeta_{N}(\theta_{*},\theta) & \longrightarrow & \mathcal{N}\left(0,\Sigma\left(\theta_{*},\theta\right)\right) & \text{if } \theta = \theta_{*} \\ \zeta_{N}(\theta_{*},\theta) & \longrightarrow & \mathcal{N}\left(-\mathbf{J}(\theta_{*},\theta)\delta,\Sigma\left(\theta_{*},\theta\right)\right) & \text{if } \theta = \theta_{*} + \frac{\delta}{\sqrt{N}} \end{cases}$$

$$\begin{aligned} \mathsf{J}(\theta_*,\theta) &= -\mathsf{E}_{\theta}\left(\frac{\partial H}{\partial \theta_*}(\theta_*,Y(\theta))\right) \\ \mathsf{\Sigma}(\theta_*,\theta) &= \lim_{N \to +\infty} \textit{Cov}_{\theta}\left(\zeta_N(\theta_*,\theta)\right) \end{aligned}$$

The change detection problem consists in answering the following question: do we still have $\theta = \theta_*$?

Damage detection Damage localization

This task is achieved by computing the following χ^2 test

$$\chi^{2}(\theta_{*},\theta) = \bar{\zeta}_{N}^{T}(\theta_{*},\theta)\mathbf{K}^{-1}(\theta_{*},\theta)\bar{\zeta}_{N}(\theta_{*},\theta)$$

with

$$\bar{\zeta}_{N}^{T}(\theta_{*},\theta) = \mathbf{J}^{T}(\theta_{*},\theta)\boldsymbol{\Sigma}^{-1}(\theta_{*},\theta)\boldsymbol{\zeta}_{N}(\theta_{*},\theta)$$

イロト イポト イヨト イヨト

and the Fisher matrix information as follows

$$\mathbf{K}(\theta_*,\theta) = \mathbf{J}^{\mathsf{T}}(\theta_*,\theta) \Sigma^{-1}(\theta_*,\theta) \mathbf{J}(\theta_*,\theta)$$

Estimation of **K** is a very tricky problem (very slow convergence).

Damage detection Damage localization

An application where K computation is critical Painter Street Overstrass - California - collaboration with University of Vancouver, Ca

and University of Aalborg, DK

・ 同 ト ・ 三 ト ・

Figure: Damage detection. Very few samples (seismic data) - bootstrap methods.

Damage detection Damage localization

Damage detection

$$\zeta_{\mathcal{N}}(\widehat{ heta}_*, heta) = \sqrt{N} \ \textit{vec}(\mathcal{S}(\widehat{ heta}_*)^{\mathsf{T}} \mathcal{H}_{\mathcal{P}})$$

$$\left. \begin{array}{c} S(\widehat{\theta}_*)^T \mathcal{O}_p(\widehat{\theta}_*) = \mathbf{0} \\ S(\widehat{\theta}_*)^T \mathcal{H}_p = \mathbf{0} \end{array} \right\} \Leftarrow \mathcal{H}_p = \mathcal{H}_p(N) = \mathcal{O}_p(\theta) \times \mathcal{C}_p$$

Subspace-based algorithms for structural identification, damage detection, and sensor data fusion, Journal of Applied Signal Processing. with M. Basseville, A. Benveniste, M. Goursat. 2007

< 🗇 > < 3 > >

Damage detection Damage localization

Outline

- Subspace identification
 - Consistency of subspace methods
- 2 Damage detection and localization
 - Damage detection
 - Damage localization
- 3 Damage detection and real problems
 - Temperature rejection
 - Flutter detection
- 4 And now ?
 - Damage detection in the frequency domain

・ 戸 ・ ・ 三 ・ ・

ъ

Damage detection Damage localization

Damage localization Bridge Z24. Eureka SINOPSYS project. Collaboration with LMS

Laurent Mevel

Soutenance d'habilitation

Damage detection Damage localization

Damage Localization A few comments

$$\mathsf{J}(heta_*, heta) \;\;=\;\; -\mathsf{E}_{ heta}\left(rac{\partial H}{\partial heta_*}(heta_*,Y(heta))
ight)$$

What it means ??

- The jacobian infers on the sensitivity with respect to any parameterization
- FEM parameterization for localization
- $size(\theta) \approx 100 << size(FEM) \approx 20k$

ヘロト ヘアト ヘビト ヘビト

æ

Damage detection Damage localization

Damage Localization

Figure: Damage Localization on bridge deck from ECP.

ヘロト ヘワト ヘビト ヘビト

э

Damage detection Damage localization

ACI CONSTRUCTIF Collaboration with LCPC/ECP/SDTOOLS and HIT, China

- Statistical model-based damage detection and localization subspace-based residuals and damage-to-noise sensitivity ratios, Journal of Sound and Vibration, 2004.
- Statistical model-based damage localization : a combined subspace-based and substructuring approach, Structural Control and Health Monitoring, 2008.

ヘロン ヘアン ヘビン ヘビン

Temperature rejection Flutter detection

Outline

- Subspace identification
 - Consistency of subspace methods
- Damage detection and localization
 - Damage detection
 - Damage localization
- 3 Damage detection and real problems
 - Temperature rejection
 - Flutter detection

4 And now ?

• Damage detection in the frequency domain

・ 戸 ・ ・ 三 ・ ・

ъ

Temperature rejection Flutter detection

A few applications Roberval bridge - France

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Figure: Damage detection on the Roberval bridge - Summer/Winter effect. Collaboration LCPC/KUL

Temperature rejection Flutter detection

Temperature modelling

$$M_{\text{struc}}\ddot{X} + C\dot{X} + (K_{\text{struc}} + K_T)X = V$$
$$A = \begin{bmatrix} 0 & I \\ -M_{\text{struc}}^{-1}(K_{\text{struc}} + K_T) & -M_{\text{struc}}^{-1}C \end{bmatrix}$$

Figure: Frequency evolution on Bridge Z4 (KUL)

if T changes, reference model is wrong and has to be corrected

Temperature rejection Flutter detection

Temperature rejection State of Art

- Analytical model based methods [Cawley 97],[Moorty 1992]
- Subspace identification (regression ARX) [Peeters & De Roeck 2000]
- Factor analysis [Kullaa 2002], modal filters [Deraemaeker & al 2006]
- Subspace detection (database of scenarios # T) [Fritzen & al 2003]
- PCA [Yan & al, 2004]

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Temperature rejection Flutter detection

Temperature rejection ACI CONSTRUCTIF - methods of rejection

- Correct the reference model by a thermal model $T \rightarrow (M, K_T) \rightarrow S(\theta_T)$
- Learn the reference by averaging scenarios at differents T $\bar{H} = \sum_{i} H_{i} \rightarrow S$
- Give the good direction (only works for small changes) : Minmax rejection of the temperature as a nuisance (skipped in this talk)

ヘロト 人間 とくほとくほとう

Temperature rejection Flutter detection

Temperature rejection ACI CONSTRUCTIF - LCPC experiment in climate chamber

・ 回 ト ・ ヨ ト ・ ヨ ト

Figure: LCPC beam in climate chamber : 1/ empirical method by merging scenarios 2/ model based correction

Temperature rejection Flutter detection

Temperature rejection on civil structures Jeronimo church - Portugal

< 🗇 🕨

Figure: Blue : no temperature rejection. Green : temperature rejection. Green peak : seism detection. Collaboration with Minho University and KUL

Temperature rejection Flutter detection

ACI CONSTRUCTIF Collaboration Ecole Centrale De Paris / LCPC

PhD Houssein Nasser

- Merging sensor data from multiple temperature scenarios for vibration-based monitoring of civil structures, Structural Health Monitoring, 2008.
- Handling the temperature effect in vibration-based monitoring of civil structures : a combined subspace-based and nuisance rejection approach, Control Engineering Practice, 2008.

イロト イポト イヨト イヨト

Temperature rejection Flutter detection

Outline

- Subspace identification

 Consistency of subspace methods

 Damage detection and localization

 Damage detection
 Damage localization
- Damage detection and real problems
 Temperature rejection
 - Flutter detection
 - And now ?
 - Damage detection in the frequency domain

・ 戸 ・ ・ 三 ・ ・

ъ

Temperature rejection Flutter detection

Flutter detection Flutter : dynamic aero-elastic instability of a surface exposed to wind

- Flight Flutter Testing : Design the flutter free flight envelope for ensuring the aircraft stability
 - \Rightarrow Very expensive and time consuming process
- Flutter : loss of stability leads to mechanical wreckage

 Project Eureka Flite and Flite 2 with Onera, Airbus, Dassault Aviation, Sopemea, LMS, VUB and KUL

. .

••

Temperature rejection Flutter detection

Flutter detection Aeroelasticity modelling

$$MX + CX + KX = U^2DX + UEX + V$$
$$A = \begin{bmatrix} 0 & I \\ -M_{\text{struc}}^{-1}(K_{\text{struc}} - U^2D) & -M_{\text{struc}}^{-1}(C_{\text{struc}} - UE) \end{bmatrix}$$

Figure: Frequency and damping evolution

Laurent Mevel Soutenance d'habilitation

イロト 不得 とくほ とくほとう

э

Temperature rejection Flutter detection

Flutter detection State of art

Current Flutter speed prediction algorithms using vibration data

- damping fit method
- Flutter margin (Zimmerman-Weissenburger)
- envelope function method
- Nissim-Gilyard method
- Flutterometer (Nasa)

Flutter speed prediction using aerodynamic theory

- numerical fluid-structure interaction algorithms
- the k method and the p k method
- the μ method

Temperature rejection Flutter detection

Flutter detection Methodology - R. Zouari - PhD thesis

- Statistical detection realtime / robust to noise / simple
- Objective : early detection of "flutter"
- CUSUM test built on the foundations of the local approach
- Detect instant of flutter

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Temperature rejection Flutter detection

Flutter detection Cusum algorithm

$$\overline{\zeta}_{n}(\theta_{*}) \stackrel{\Delta}{=} \mathcal{J}_{n}(\theta_{*},\theta)^{T} \Sigma_{n}^{-1}(\theta_{*},\theta) \operatorname{vec}(S(\theta_{*})^{T}1/n \sum_{i=p}^{n-p} \mathcal{Y}_{i,p}^{+} \mathcal{Y}_{i,p}^{-T})$$

$$Z_{n}(\theta_{*}) \stackrel{\Delta}{=} \mathcal{J}_{n}(\theta_{*},\theta)^{T} \Sigma_{n}^{-1}(\theta_{*},\theta) \operatorname{vec}(S(\theta_{*})^{T} \mathcal{Y}_{n,p}^{+} \mathcal{Y}_{n,p}^{-T})$$

$$R_{n}(d) \stackrel{\Delta}{=} \sum_{k} \overline{\Sigma}_{k}(d)^{-1/2} Z_{k}(d)$$

$$T_{n}(d) \stackrel{\Delta}{=} \max_{k} R_{k}(d)$$

Laurent Mevel

Soutenance d'habilitation

ъ

Temperature rejection Flutter detection

Flutter detection Model vs Empirical methods - collaboration VUB

 Model : predicted flutter point : combined data/model approach

```
det(Ms^{2} + (C + UB)s + (K + U^{2}D)) = 0
```

• Empirical : predict instant of critical drop

Temperature rejection Flutter detection

Flutter detection Collaboration ONERA/Alrbus/AGH - PoLand

Figure: Simulated two engines aircraft in transient acceleration phase

ヘロト ヘワト ヘビト ヘビト

э

Temperature rejection Flutter detection

Flutter detection Flite 1 and Flite 2 projects publications

- Fast in-flight detection of flutter onset : a statistical approach, AIAA Journal of Guidance, Control, and Dynamics, 2005.
- In-flight monitoring of aeronautic structures : vibration-based on-line automated identification versus detection, IEEE Control Systems Magazine, Special Issue on Applications of System Identification, 2007.

PhD Rafik Zouari

An adaptive statistical approach to flutter detection, in Proceedings of the 17th IFAC World Congress, 2008.

ヘロト 人間 ト ヘヨト ヘヨト

Temperature rejection Flutter detection

Comments

- Both problems were approached using some heavy modelling (LCPC/ECP for temperature, VUB for flutter)
- Empirical methods : robust, efficient, automated, black box
- Both problems rely on correcting/adapting the reference / to physical parameter
 - Temperature for civil structure is a nuisance
 - Aeroelasticity for aircrafts is not a nuisance, it has to be detected
- Both problems have different challenges ahead
 - For flutter, aeroelasticity equations can be avoided just watch the damping drop - but transient effects, system size, turbulence make the problem hard to solve
 - For temperature rejection, the system is quite stationary and small, but the thermal effects are complex - it is not even sure, the assumptions are correct

Damage detection in the frequency domain

・ 戸 ・ ・ 三 ・ ・

Outline

Subspace identification

Consistency of subspace methods

Damage detection and localization

Damage detection
Damage localization

Damage detection and real problems

Temperature rejection
Flutter detection

And now ?

• Damage detection in the frequency domain

Damage detection in the frequency domain

・ 同 ト ・ ヨ ト ・ ヨ ト

Frequency domain Why ?

- A large activity in frequency domain identification
 - Polymax
 - Transmissibility
 - OMAX
 - FDD
- Some advantages for large scale systems
 - Focus on frequency band
 - Not quadratic with sensor
- G. Canales PhD thesis

Damage detection in the frequency domain

Frequency domain Polymax - Polyreference LSCF

$$\mathbf{B}(\omega) = \mathbf{H}(\omega)\mathbf{A}(\omega) + \mathbf{V}(\omega) , H - H_0 = \frac{1}{\sqrt{K}}\widetilde{H} ,$$

$$\zeta_{K}^{N}(\mathbf{B}_{k,0}^{N},\mathbf{A}_{k,0}^{N},\omega) = \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \left(\mathbf{B}_{k,0}^{N}(\omega) - \mathbf{H}(\omega)\mathbf{A}_{k,0}^{N}(\omega)\right) \left(\mathbf{A}_{k,0}^{N}(\omega)\right)^{H}$$

Theorem (polymax damage detection)

$$\zeta_{K}^{N}(\mathbf{B}_{k,0}^{N},\mathbf{A}_{k,0}^{N},\omega) \sim \mathcal{N}\left(-\widetilde{\mathbf{H}}(\omega)S_{0}^{aa}(\omega),S_{0}^{aa}(\omega)S_{0}^{vv}(\omega)\right)$$

$$\chi_{K}^{N}(\mathbf{B}_{k,0}^{N}, \mathbf{A}_{k,0}^{N}, \omega) = \frac{\zeta_{K}^{N}(\mathbf{B}_{k,0}^{N}, \mathbf{A}_{k,0}^{N}, \omega) \left(\zeta_{K}^{N}(\mathbf{B}_{k,0}^{N}, \mathbf{A}_{k,0}^{N}, \omega)\right)^{H}}{\widehat{S}_{0}^{aa}(\omega)\widehat{S}_{0}^{vv}(\omega)} \xrightarrow{\mathbb{R}} \mathbb{R} \xrightarrow{\mathbb{R}} \xrightarrow{\mathbb{R}} \mathbb{R} \xrightarrow{\mathbb{R}} \xrightarrow{\mathbb$$

Damage detection in the frequency domain

Frequency domain Polymax - Polyreference LSCF - Eureka project Flite1

Figure: Polyreference LSCF detection on non specified aircraft from an unspecified french aircraft manufacturer

PhD Gilles Canales

A polyreference least squares complex frequency domain based statistical test for damage detection, in Proceedings of the 17th IFAC World Congress, 2008.

Damage detection in the frequency domain

・ 同 ト ・ ヨ ト ・ ヨ ト

Discussion

- Identification/Detection : theory AND applications
- Real applications transfer on large scale systems
 - Scilab COSMAD Toolbox used by partners (2001-)
 - identification methods : SNECMA, EADS, ONERA, ...
 - detection methods : LCPC, SVIBS, ...
- Ongoing collaborations
 - academic : KUL, VUB, HIT, UBC, LCPC, ECP, Minho
 - industrial : LMS, SVIBS, SDTOOLS, SNECMA, EADS, ONERA, Dassault

Damage detection in the frequency domain

・ 同 ト ・ ヨ ト ・ ヨ ト

Discussion

- Past works have focused on
 - time series and subspace methods
 - long stationary sequences
 - small systems
- What has been neglected
 - frequency domain methods
 - confidence intervals and FEM recalage
 - transient events (seismic events and buildings)
 - Iarge systems
- Time of laboratory and academic experiments belong to the past : collaboration with industrials and academic partners is critical

Damage detection in the frequency domain

Real scale implementation From the bridge Z4 up to now

Figure: Bridge Z24 -1999

Figure: Bridge monitoring project under way funded by Canada government - 2009 technology transfer - SVIBS DK

< 🗇 🕨

Damage detection in the frequency domain

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Thanks to

all members of the SISTHEM team

and all who supported me up to now